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Abstract
Elevated rates of reactive oxygen species (ROS) have been detected in almost all cancers, where they promote many aspects 
of tumour development and progression. However, tumour cells also express increased levels of antioxidant proteins to 
detoxify from ROS, suggesting that a delicate balance of intracellular ROS levels is required for cancer cell function. Further,
the radical generated, the location of its generation, as well as the local concentration is important for the cellular functions of 
ROS in cancer. A challenge for novel therapeutic strategies will be the fi ne tuning of intracellular ROS signalling to effectively 
deprive cells from ROS-induced tumour promoting events, towards tipping the balance to ROS-induced apoptotic signal-
ling. Alternatively, therapeutic antioxidants may prevent early events in tumour development, where ROS are important. 
However, to effectively target cancer cells specifi c ROS-sensing signalling pathways that mediate the diverse stress-regulated 
cellular functions need to be identifi ed. This review discusses the generation of ROS within tumour cells, their detoxifi cation, 
their cellular effects, as well as the major signalling cascades they utilize, but also provides an outlook on their modulation
in therapeutics. 
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Abbreviations: 5-LOX, 5-Lipoxygenase; AP-1, activating protein-1; Ask-1, apoptosis signal-regulating kinase-1; BER, base 
excision repair; BITC, benzyl isothiocyanate; BPQ, benzo(a)pyrene quinines; CREB, cyclic AMP response element (CRE)-
binding protein; CSC, cancer stem cell; ECM, extracellular matrix; EGCG, epigallocate-3-gallate; EGF, epidermal growth 
factor; EMT, epithelial-to-mesenchymal transition; Erk1/2, extracellular-regulated kinase 1/2; Ets, E twenty-six; FAK, focal 
adhesion kinase; FGF, fi broblast growth factor; GCS, glutamylcysteine synthetase; GPX, glutathione peroxidase; GSH, glutath-
ione; GSSG, glutathione disulphide; GST, glutathione S-transferase; HIF-1, hypoxia inducible factor-1; ICAM-1, intracellular 
adhesion protein 1; IFN γ, interferon  γ; IKK, I κB kinase; IL, interleukin; IOA, isoobtusilactone A; JNK, c-Jun N-terminal kinase; 
MAPK, mitogen-activated protein kinase; MEK, mitogen-activated protein kinase kinase; MKP3, mitogen-activated protein 
kinase phosphatase 3; MMP, matrix metalloproteinase; NAC, N-acetyl- L-cysteine; NER, nuclear excision repair; NF- κB, nuclear 
factor  κ-B; NIK, NF- κB-inducing kinase; PDGF, platelet-derived growth factor; PDK-1, 3’-phosphoinositide-dependent 
kinase-1; PDTC, pyrrolidine dithiocarbamate; PI3K, phosphoinositide 3-kinase; PKB, protein kinase B; PKC, protein kinase 
C; PKD, protein kinase D; Prx, peroxiredoxin; PST, pancratistatin; PTEN, phosphatase and tensin homologue deleted on chromo-
some 10; ROS, reactive oxygen species; SAL, salvicine; SOD, superoxide dismutase; TGF β, transforming growth factor 
β; TIMP, tissue inhibitor of metalloproteinase; TNF α, tumour necrosis factor  α; TPL, triphala; TRAF, TNF receptor-associated 
factor; VEGF, vesicular epithelial growth factor. 

Reactive oxygen species 

Reactive oxygen species are radicals, ions or molecules 
that have a single unpaired electron in their outermost 
shell of electrons. Due to this character, ROS are highly 
reactive. ROS can be categorized into two groups: free 

oxygen radicals and non-radical ROS. Free oxygen 
radicals include superoxide (O 2

•–), hydroxyl radical 
(•OH), nitric oxide (NO•), organic radicals (R•), per-
oxyl radicals (ROO•), alkoxyl radicals (RO•), thiyl radi-
cals (RS•), sulphonyl radicals (ROS•), thiyl peroxyl 
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radicals (RSOO•) and disulphides (RSSR). Non-radical 
ROS include hydrogen peroxide (H 2O2), singlet oxygen 
(1O2), ozone/trioxygen (O 3), organic hydroperoxides 
(ROOH), hypochloride (HOCl), peroxynitrite (ONO–), 
nitrosoperoxycarbonate anion (O �NOOCO2

–), nit-
rocarbonate anion (O 2NOCO2

–), dinitrogen dioxide 
(N2O2), nitronium (NO 2

�) and highly reactive lipid- or 
carbohydrate-derived carbonyl compounds. Among 
them, superoxide, hydrogen peroxide and hydroxyl 
radicals are the most well studied ROS in cancer. 

Cellular sources for ROS 

In cancer cells high levels of reactive oxygen species 
can result from increased metabolic activity, mito-
chondrial dysfunction, peroxisome activity, increased 
cellular receptor signalling, oncogene activity, increased 
activity of oxidases, cyclooxygenases, lipoxigenases and 
thymidine phosphorylase or through cross-talk with 
infi ltrating immune cells [1–3]. 

In mitochondria, ROS are produced as an inevitable 
byproduct of oxidative phosphorylation (Figure 1). 
The electron transport chain encompasses complexes 

I–IV and ATP synthase on the mitochondrial inner 
membrane. Superoxide is generated at complexes I 
and III and released into the inter-membrane space 
(∼80% of the generated superoxide) or the mitochon-
drial matrix ( ∼20%) [4]. The mitochondrial perme-
ability transition pore (MPTP) in the outer membrane 
of the mitochondrion allows the leakage of superoxide 
into the cytoplasm ([5] and [6] for a more detailed 
description of mitochondrial ROS generation). Super-
oxide is dismutated to H 2O2, either in the mitochon-
drial matrix (by MnSOD) or in the cytosol (by Cu/
ZnSOD). H 2O2 is a  bona fi de second messenger that 
is highly diffusible. Recent data suggest that hydrogen 
peroxide may cross cellular membranes through spe-
cifi c members of the aquaporin family [7]. For example, 
aquaporin-8 was detected in the inner mitochondrial 
membrane and suggested to function as a channel for 
water and potentially H 2O2 [8]. In addition to the mito-
chondria, peroxisomes are other major sites of cellular 
ROS generation [9]. In these respiratory organelles, 
superoxide and H 2O2 are generated through xanthine 
oxidase in the peroxisomal matrix and the peroxisomal 
membranes ([10,11], see [12] for a detailed review 
on ROS in peroxisomes). 

Figure 1. Major mechanisms of ROS generation and detoxifi cation. Superoxide (O2
•–) radicals are generated at the inner membrane of 

the mitochondria as a byproduct of the electron transport chain and then release into the mitochondrial matrix or the cytosol via the 
mitochondrial permeability transition pore (MPTP). Superoxide is also generated through activation of NADPH oxidases (NOX), for
example in response to growth factor receptor (GF-R) or cytokine receptor activation. SOD enzymes, such as MnSOD in the mitochondrial 
matrix or Cu/ZnSOD in the cytosol, reduce superoxide to H2O2. Several cytosolic antioxidant systems, including catalase, glutathione 
peroxidase (GPX) and peroxiredoxins (Prx), detoxify cells from hydrogen peroxide by reducing it to water. Both hydrogen peroxide and 
superoxide contribute to cellular signalling but also can form hydroxyl radicals (•OH). Hydroxyl radicals are generated from O2

•–and H2O2
in the Fenton reaction and have damaging functions for proteins, DNA and lipids.
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Growth factors and cytokines stimulate the pro-
duction of ROS to exert their diverse biological effects 
in cancer [13–16]. For example, an elevation of hydro-
gen peroxide and nitrite oxide levels was detected in 
tumour cells in response to interferon γ (IFN γ) and 
TNFα [17,18]. Further, platelet-derived growth fac-
tor (PDGF), epidermal growth factor (EGF), insulin, 
transforming growth factor  β (TGF β), interleukin-1 
(IL-1), tumour necrosis factor  α (TNF α), angiotensin 
and lysophosphatidic acid all induce the formation of 
superoxide [13,16,19–23]. Activation of the small 
GTPase K-ras downstream of growth factors or its 
oncogenic mutation has been tightly associated with 
increased generation of superoxide and the incidence 
of various cancers [24–26]. Dependent on the cellular 
system, growth factors and mutant K-ras elevate intra-
cellular superoxide levels through NADPH oxidase or 
mitochondria [1]. NADPH oxidase can also be acti-
vated via the RhoGTPase Rac-1 [27]. Rac-1-medi-
ated generation of superoxide is induced by cell 
surface receptors including c-Met [28]. Active Rac-1 
further was implicated to induce 5-Lipoxygenase 
(5-LOX)-mediated generation of H 2O2 [29]. 

Many cancers arise from sites of chronic irritation, 
infection or infl ammation. Recent data have expanded 
the concept that infl ammation is a critical component 
of tumour progression [30–32]. Macrophages induce 
the generation of ROS within tumour cells through 
secretion of various stimuli, such as TNF α [1]. Pro-
duction of ROS by neutrophils and macrophages as 
a mechanism to kill tumour cells is well established. 
In these cells, a rapid burst of superoxide formation 
primarily mediated by NAPDH oxidase leads to sub-
sequent production of hydrogen peroxide [33,34]. Fur-
thermore, during infl ammation processes, activated 
macrophages also generate nitric oxide which reacts 
with superoxide to produce peroxinitrite radicals that 
are similar in their activity to hydroxyl radicals and 
contribute to tumour cell apoptosis [35]. 

Cellular detoxifi cation from ROS 

Under normal physiological conditions, the intracel-
lular levels of ROS are steadily maintained to prevent 
cells from damage. Detoxifi cation from ROS is facil-
itated by non-enzymatic molecules (i.e. glutathione, 
fl avenoids and vitamins A, C and E) or through anti-
oxidant enzymes which specifi cally scavenge different 
kinds of ROS (Figure 1). 

Superoxide dismutases (SODs) are metalloenzymes 
which catalyse the dismutation of superoxide anion 
to oxygen and hydrogen peroxide. They ubiquitously 
exist in eukaryotes and prokaryotes. Superoxide dis-
mutases utilize metal ions such as copper (Cu 2�), zinc 
(Zn2�), manganese (Mn 2�) or iron (Fe 2�) as cofac-
tors. The different SOD enzymes are located in dif-
ferent compartments of the cell and are highly specifi c 
in regulating linked biological processes [36]. 

Catalase facilitates the decomposition of hydrogen 
peroxide to water and oxygen. The major localiza-
tion of catalase in most eukaryotes is in the cytosol 
and peroxisomes [37–39]. Peroxiredoxins are thiore-
doxin peroxidases that catalyse the reduction of 
hydrogen peroxide, organic hydroperoxides and per-
oxynitrite [40–42]. They are divided into three 
classes: typical 2-cysteine peroxiredoxins (PrxI-IV), 
atypical 2-cysteine peroxiredoxins (PrxV) and 
1-cysteine peroxiredo xins (PrxVI). Interestingly, PrxI 
knockout mice show increased levels of oxidative 
stress and die prematurely of cancer [43]. The thiore-
doxin system consists of thioredoxin and thiore-
doxin reductase. The catalytic site of thiore doxin 
contains two neighbouring cysteines which are cycled 
between an active (reduced) dithiol form and an oxi-
dized disulphide form [44]. In its active state, thiore-
doxin scavenges reactive oxygen species and keeps 
proteins in their reduced state [45]. Thioredoxin is 
regenerated by thioredoxin reductases which utilize 
NADPH as an electron donor [46]. 

The glutathione system includes glutathione 
(GSH), glutathione reductase, glutathione peroxi-
dases (GPX) and glutathione S-transferases (GST). 
Glutathione protects cells from oxidative stress by 
reducing disulphide bonds of cytoplasmic proteins 
to cysteines. During this process, glutathione is oxi-
dized to glutathione dis ulphide (GSSG). Glutathi-
one peroxidases (GPX) catalyse the breakdown of 
hydrogen peroxide and organic hydroperoxides 
[47,48]. Glutathione reductase reduces GSSG and 
refi lls GSH pools [49]. Under physio logi cal condi-
tions, glutathione almost exclusively exists in its 
reduced form because of a constitutive activity of 
glutathione reductase in cells [50]. Glutathione 
S-transferases are detoxifi cation enzymes that catal-
yse the conjunction of GSH to a variety of exoge-
nous and endogenous electrophilic compounds 
[51–53]. GSTs are over-expressed in a wide variety 
of tumours to regulate MAPK pathways and are also 
involved in the development of resistance to chemo-
therapeutics [51]. 

Signalling pathways regulated by ROS in cancer 

ROS-sensitive signalling pathways are persistently ele-
vated in many types of cancers, where they participate 
in cell growth/proliferation, differentiation, protein 
synthesis, glucose metabolism, cell survival and 
inflammation [1]. Reactive oxygen species, particu-
larly hydrogen peroxide, can act as second messen-
gers in cellular signalling [16,54–57]. H 2O2 regulates 
protein activity through reversible oxidation of its tar-
gets including protein tyrosine phosphatases, protein 
tyrosine kinases, receptor tyrosine kinases and tran-
scription factors [1,27,58]. In the following para-
graphs, we focus on ROS-mediated regulation of the 
mitogen-activated protein (MAP) kinase/Erk cascade, 
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phosphoinositide-3-kinase (PI3K)/Akt-regulated sig-
nalling cascades, as well as the I κB kinase (IKK)/
nuclear factor  κ-B (NF- κB)-activating pathways 
(Figure 2). Other ROS-regulated signalling pathways 
are included later. 

ROS-mediated regulation of the MAPK/Erk1/2 
pathway  

The activation of the MAPK (mitogen-activated pro-
tein kinase)/Erk1/2 (extracellular-regulated kinase 1/2)
pathway in cancer is mediated through growth factors 
and K-ras and was functionally linked to increased 
cell proliferation [59,60]. For instance, in human 
breast cancer cells, Erk1/2 activated by hydrogen per-
oxide generated as a byproduct during oestrogen meta-
bolism increases cell proliferation [61,62]. Several 
mechanisms of how ROS activate Erk1/2 are known. 
For example Ras, which is an upstream activator for 
Erk1/2, can be activated directly through oxidative 
modifi cation at its cysteine 118 residue, leading to the 
inhibition of GDP/GTP exchange [63]. ROS also 
activate upstream kinases of Erk1/2 such as p90 RSK

[64,65]. It was recently shown that increased Erk1/2 
activity in ovarian cancer cells in the presence of the 
high concentration of endogenous ROS results from 
sustained ubiquitination and loss of endogenous 

MKP3 (mitogen-activated protein kinase phos-
phatase 3), a phosphatase that negatively-regulates 
Erk1/2 activity [64,65]. Additionally to its effects on 
cell proliferation, it was also shown in multiple can-
cers (i.e. ovarian cancer, breast cancer, melanoma 
and leukaemia) that the activation of Erk1/2 through 
ROS increases cell survival, anchorage-independent 
growth and motility [60,65,66]. 

While a role for ROS-activated Erk1/2 signalling in 
cell proliferation is well established [61,65,67], its ability 
to regulate cancer cell survival seems to be cell type 
specifi c [64,68,69]. For example, treatment of MCF-7 
and MDA-MB-435 breast cancer cells with ROS scav-
engers or inhibitors that target Erk1/2 or its upstream 
kinase MEK (mitogen-activated protein kinase kinase) 
promote apoptosis and cell adhesion [70,71]. In an 
animal model for skin cancer, murine keratinocytes 
lacking Tiam1, an upstream activator of Erk1/2, show 
low levels of intracellular ROS [69]. These keratino-
cytes are more sensitized to apoptosis upon depriva-
tion of EGF and insulin, implicating that Erk1/2 
activation though Tiam1 and ROS is required for cell 
survival of skin cancer [69]. In contrast, in human 
pancreatic cancer and glioma cells, activation of Erk1/2 
upon treatment with exogenous H 2O2 triggers cell 
death and this probably is due to the high basal level 
of ROS in these cancer cells [72–76]. In line with 

Figure 2. ROS-induced cellular signalling. Reactive oxygen species in cells can be generated by growth factor signalling through activation 
of the NADPH oxidase NOX1 or through the mitochondria. These ROS then can induce cellular signalling cascades by reversible oxidation 
of phosphatases such as PTEN or PTP in their active site cysteins or by direct oxidation of kinases such as Src. This leads to the activation 
of several signalling cascades such as a Src/PKD1-dependent NF-κB activation mechanism, the MAPK (Erk1/2, p38 and JNK) signalling 
cascades, as well as the PI3K/Akt signalling pathway. Other mechanisms, by which ROS induce cellular signalling is through activation of 
redox-regulated transcription factors such as AP-1 or FOXO.
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these in vitro data is an  in vivo study showning that 
ROS-mediated increase of Erk1/2 activation loop 
phosphorylation suppresses the growth of pancreatic 
tumour cell xenografts [77]. 

Oxidative stress regulation of the PI3K/Akt pathway 

Akt (or protein kinase B; PKB) mediates cell survival 
through phosphorylation and inactivation of its sub-
strates such as the pro-apoptotic proteins Bad, Bax, 
Bim or FOXO transcription factors [78–83]. In breast 
cancer, ROS generation during oestrogen metabolism 
or other potential mammary carcinogens was shown 
to activate the PI3K/Akt signalling pathway [84,85]. 
Hydrogen peroxide generated by epithelial growth 
factor (EGF) in human ovarian cancer cells activates 
Akt and p70 S6K1, a substrate of Akt that regulates 
protein synthesis [86]. Moreover, the inhibition of ROS 
in the human pancreatic tumour cell line Panc-1 reduced 
the levels of phosphorylated (active) Akt and induced 
apoptosis [87]. Akt activity is tightly controlled by a 
signalling cascade that encompasses the kinases PDK-1 
(3’-phosphoinositide-dependent kinase-1), mTOR and 
PI3K as well as the phosphatase PTEN (phosphatase 
and tensin homologue deleted on chromosome 10). 
PDK-1 and mTOR regulate Akt activating phospho-
rylations at S473 and T308, whereas PI3K generates 
phosphatidylinositol-3,4,5-triphosphate (PIP 3), which 
serves as a membrane anchor [88]. PTEN negatively 
regulates PIP 3 levels and thus decreases Akt activity 
[89,90]. Treating cells with exogenous hydrogen per-
oxide it was shown that Akt and PDK-1 can be acti-
vated by oxidative stress [91,92]. This correlates with 
the observation that PTEN is reversibly inactivated 
by H 2O2 [93]. Loss of PTEN increases basal levels of 
hydrogen peroxide and superoxide due to depletion 
of the expression of several antioxidant enzymes 
including peroxiredoxins and copper/zinc superoxide 
dismutase [94]. This suggests a constant activation of 
Akt through enhanced ROS production due to PTEN 
ablation, but also oxidative stress-mediated activation 
of its upstream kinases. 

ROS regulation of the IKK/NF-kB pathway

In many cancers the transcription factor NF- κB is 
uncoupled from its normal modes of regulation and 
shows increased activity [95–98]. Recent studies have 
established a crucial role for NF- κB in tumour cell 
survival, regulation of cell cycle and proliferation, cel-
lular adhesion and development of drug resistance in 
cancer cells during therapy [99–101]. 

NF-κB is a redox-regulated sensor for oxidative 
stress [102] and is activated by low doses of hydrogen 
peroxide [103]. When inactive, NF- κB is tightly bound 
to its inhibitor I κB that sequesters the transcription 
factor in the cytosol [104–108]. The canonical activation 

of NF- κB is mediated through the NF- κB-inducing
kinase (NIK) and the I κB kinase (IKK) complex, con-
sisting of IKK α, IKK β and NEMO. Upon its activa-
tion through cytokines such as TNF α or IL-1, NIK 
phosphorylates and activates its downstream targets, 
the kinases IKK α and IKK β [104,109–111]. Active 
IKKs phosphorylate I κB and this leads to its subse-
quent ubiquitination and proteosomal degradation 
[112,113]. Degradation of I κB translocates NF- κB
to the nucleus, where it acts as a transcription factor 
to induce the expression of anti-apoptotic and anti-
infl ammatory genes [114]. 

Oxidative stress activates NF- κB through a variety 
of distinct signalling pathways [115]. For example, 
treatment of MCF-7 breast cancer cells with TNF α,
IL-1β or the mammary carcinogen sodium arsenite 
generates hydrogen peroxide and superoxide, which 
translates to the activation of NF- κB and increased 
cell proliferation [116–118]. In oral squamous carci-
noma cells silencing of the antioxidant superoxide 
dismutase (SOD) increased basal ROS levels corre-
lating with increased NIK and NF- κB activity [119]. 
The mechanism of how ROS activates NIK is most 
likely via oxidative inhibition of regulatory phosphatases 
[116]. Recent work from our group delineated an 
IKK-dependent NF- κB-inducing signalling pathway 
that is activated by increased cellular oxidative stress, 
induced either by exogenous treatment of cells with 
hydrogen peroxide, by rotenone-mediated mitochon-
drial generation of superoxide or inhibition of intrac-
ellular antioxidant systems such as the glutathione 
system [120,121]. In this pathway, NF- κB is activated 
through the lipase PLD1 and the kinases Src, Abl and 
Protein Kinase C δ (PKC δ), whose signalling converge 
at the level of Protein Kinase D1 (PKD1) [120,122–
124]. PKD1 is upstream of the IKK complex and 
mediates the activation of NF- κB through IKK β
[121]. In addition to this, IKK-independent activa-
tion of NF- κB in response to ROS can occur through 
tyrosine phosphorylation of I κBα, leading to a release 
from the IKK complex, but not to its degradation 
[125,126]. 

Specifi c functions of ROS in cancer  

Oxidative stress-mediated signalling events have been 
reported to affect all characters of cancer cell behavi-
our [1,2,127]. For instance, ROS in cancer are involved 
in cell cycle progression and proliferation, cell sur-
vival and apoptosis, energy metabolism, cell morphol-
ogy, cell–cell adhesion, cell motility, angiogenesis and 
maintenance of tumour stemness (Figure 3). 

ROS in tumour cell proliferation 

Low doses of hydrogen peroxide and superoxide stim-
ulate cell proliferation in a wide variety of cancer cell 
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types [1,128]. For example, intracellular oxidative 
stress in breast cancer cells is increased through the 
translocation of oestrogen to the mitochondria [62,
129–131]. Mitochondria-derived ROS regulate both 
cell proliferation and quiescence. This is mediated by 
MnSOD activity which serves as a mitochondrial 
ROS switch [132]. Decreased MnSOD activity favours 
proliferation, due to increased superoxide and low 
hydrogen peroxide levels, while increasing MnSOD 
activity drives the proliferating cells to transit into 
quiescence, due to increased generation of hydrogen 
peroxide [133]. In breast cancer cells, inhibition of 
the mitochondrial uniporter blocks ROS generation 
and suppresses oestrogen-induced cell proliferation, 
suggesting a role of mitochondrial ROS in tumour 
growth [134]. Oestrogen-induced cell proliferation 
results from ROS-mediated activation of the Erk1/2 
MAPK signalling pathway and the transcription fac-
tor CREB (cyclic AMP response element (CRE)-
binding protein) [61,131]. 

Reactive oxygen species can upregulate the mRNA 
levels of cyclins that participate in the cell cycle to 
expedite G1 to S phase transition, including cyclin 
B2, cyclin D3, cyclin E1 and cyclin E2 [130]. It was 
shown that loss of the redox control of the cell cycle 
in normal MCF-10A cells may contribute to aberrant 

proliferation [135]. The treatment of MCF-10A cells 
with the antioxidant NAC caused delays in the pro-
gression from G1 to S accompanied with a decrease 
in cyclin D1 levels [135]. Further, the environmental 
carcinogen sodium arsenite stimulates ROS pro-
duction in breast cancer cells and potentiates S phase 
progression and subsequent cell proliferation [118]. 
Likewise, benzo(a)pyrene quinines (BPQs) imitate growth 
factor signalling and increase mammary epithelial cell 
growth rates through induction of superoxide and 
hydrogen peroxide [84]. 

Conversely, antioxidants inhibit tumour cell prolif-
eration [136]. For example, pancreatic cancer cell lines 
generally show high basal levels of endogenous oxida-
tive stress as compared to normal cells [1]. These 
increased ROS levels have been linked to increased 
proliferation. A stable ectopic expression of the highly-
active antioxidant enzyme MnSOD reduces the cell 
growth rate of pancreatic tumour cells [72]. Moreover, 
the expression levels and activities of endogenous 
MnSOD, Cu/ZnSOD, catalase and glutathione per-
oxidase reversely correlate with cell doubling times in 
various pancreatic cancer cell lines [72,73]. ATM (ataxia 
telangiectasia mutated) is one of the proteins involved 
in cell cycle regulation that are activated by ROS. 
Patients lacking ATM show higher levels of oxidative 

Figure 3. Generation, regulation and effects of cellular ROS. ROS are generated in normal cellular processes and cells express antioxidants to 
deplete intracellular levels of oxygen radicals. Tumourigenic events including oncogene activation (i.e. mutation of K-ras), metabolic alterations 
or macrophage infi ltration or hypoxia/reoxygenation processes in tissues can increase intracellular ROS levels and promote tumour formation 
or progression. These tumour-promoting ROS levels can lead to cell cycle progression, increased proliferation and survival signalling, EMT, 
increased motility, genomic instability and increased angiogenesis and may be negatively-regulated by therapeutic antioxidants. Finally, excessive 
increase in intracellular ROS levels as mediated by chemotherapeutics, can induce cell cycle arrest, senescence or cell death of tumour cells, 
but may be repulsed by the tumour cells through an increase in the expression of endogenous antioxidants.
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damage and similar effects, obtained with ATM knock-
out mice can be rescued with administration of anti-
oxidants [137,138]. Altogether, this suggests ROS as 
positive regulators of tumour cell proliferation by modu-
lating key proteins in cell cycle progression. 

ROS in apoptosis and cell survival

A disproportional increase in intracellular ROS can 
induce cancer cell cycle arrest, senescence and apop-
tosis. This can be achieved with cancer chemotherapy, 
depletion of cells from antioxidant proteins or gener-
ation of ROS by immune cells. Apoptosis is linked to 
an increase in mitochondrial oxidative stress that causes 
cytochrome  c release, an unrevocable event that leads 
to the activation of caspases and cell death [139,140]. 
Additionally, superoxide generation through the Rac-1/
NADPH oxidase pathway can also induce pro-apoptotic 
signalling [141]. 

Mitochondrial release of H 2O2 and NO upon 
apoptotic signals leads to the activation of c-Jun 
N-terminal kinases (JNKs) [139,142]. In response to 
ROS, JNKs catalyse the phosphorylation and down-
regulation of anti-apoptotic proteins such as Bcl-2 
and Bcl-XL [139]. Both Bcl-2 and Bcl-XL have been 
shown to antagonize ROS generation and to protect 
cells from ROS-mediated apoptosis [143,144]. JNK 
also alters the composition of the Bax/Bcl-2 complex 
by increasing the expression of Bax, leading to forma-
tion of Bax homodimers, resulting in dissipation of 
mitochondrial membrane integrity [145–148]. 

p38, another MAPK family member, was also impli-
cated in apoptotic signalling in response to increased 
generation of ROS. Both p38 and JNK are activated 
through Ask-1 (apoptosis signal-regulating kinase-1), 
whose activity is regulated by its interaction with thi-
oredoxin. Thioredoxin is a redox-regulated protein 
that in its reduced form binds and inhibits Ask-1 [149,
150]. In addition to Ask-1-induced signalling cas-
cades, other signalling proteins such as forkhead tran-
scription factors (i.e. FOXO3a), p66Shc and p53 have 
been implicated in the induction of apoptosis in 
response to ROS [78,151]. For example, an interest-
ing hypothesis is that constitutive oxidative stress in 
tumour cells may lead to the selection of p53-defi cient 
clones that are resistant to apoptosis [1]. 

Death receptors such as the TNF receptor I mainly 
induce ROS generation via the mitochondria, leading 
to caspase activation and cell death [152]. However, 
TRAF4 (TNF receptor-associated factor4), a compo-
nent of the TNF α signalling pathway, also binds to 
the NADPH oxidase complex to activate JNK [153], 
suggesting that death receptors may use several ways 
to induce ROS within cells. Notably, TNF-induced 
oxidative stress also mediates anti-apoptotic signalling 
by inducing the expression of MnSOD and catalase 
through NF- κB [154]. 

In the above signalling events high levels of ROS 
turn on cell death signalling. However, it recently 
became clear that low levels of oxidative stress can 
also actively promote cell survival signalling. Such a 
ROS-mediated survival pathway is regulated by pro-
tein kinase D1 (PKD1) [120,121,124,155–157]. Eleva-
tion of intracellular mitochondrial ROS levels activates 
PKD1 and subsequently NF- κB, leading to upregula-
tion of antioxidant proteins such as MnSOD and 
anti-apoptotic proteins such as A20 and cIAPs [158]. 
In this pathway PKD1 is activated through the tyrosine 
kinase Src. Src directly phosphorylates PKD1, but also 
facilitates further activating phosphorylations through 
the kinases PKC δ (a member of the novel PKC family) 
and Abl [6,120,121,123,124,142]. The elimination of 
this pathway sensitizes tumour cells to oxidative stress 
and increases their susceptibility to ROS-mediated 
cell death [155–157,159,160]. 

Another anti-apoptotic protein that is activated by 
ROS in cancer is Akt, a serine/threonine kinase that 
fosters cell survival through phosphorylation and inac-
tivation of its pro-apoptotic substrates [78–83]. Akt 
activity is induced by multiple receptor tyrosine kinases 
such as PDGF-R as well as constitutively-active K-ras 
via activation of PI3K. 

ROS as regulators of cell motility and metastasis 

The treatment of carcinoma cells with hydrogen per-
oxide prior to intravenous injection into mice enhanced 
metastasis [161]. Additionally, sub-populations of the 
low- or non-motile breast cancer cell line MCF-7 that 
possess higher levels of endogenous ROS than the 
parental cells showed increased motility, and orthotopic 
tumours generated with these cell lines metastasized 
to lung, liver and spleen [162]. Furthermore, meta-
static breast cancer and highly-invasive pancreatic cancer 
cells show lower levels and activities of the antioxidant 
enzyme MnSOD [73,163,164]. This illustrates that 
the intracellular redox state governs crucial steps for 
the metastatic process. This comprises decreased cell 
adhesion to the extracellular matrix, anchorage-
independent survival, increased migratory and inva-
sive potential, as well as intravasation. 

Cell adhesion and migration are dependent on 
integrin binding to the extracellular matrix. Integrins 
elevate oxidant levels mainly by increasing cyclooxy-
genase-2 [165], but also through 5-lipoxygenases 
(5-LOX) and mitochondria [27,166]. In this context, 
an increase in mitochondrial ROS was linked to a fi rst 
cellular contact with ECM and increases in cytosolic 
ROS were shown to contribute to cytoskeleton 
remodelling and actin stress fi bre formation during a 
later phase of the process [27,167]. Targets for mito-
chondrial ROS in these processes are SHP-2 and 
FAK (focal adhesion kinase), while cytosolic ROS 
target the phosphatases LMW-PTP and SHP-2, 
receptor tyrosine kinases, Src-family kinases, FAK 
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and structural proteins such as  β-actin (in more 
detail reviewed in [27]). Activation of phosphatases 
and Src occurs through direct oxidation, whereas acti-
vation of FAK is probably indirect through upstream 
signalling events leading to its tyrosine phosphoryla-
tion [168]. Both Src and FAK are initiators of focal 
adhesion formation in adherent cells, contributing to 
cell spreading, cell migration and prevention of cell 
death by anoikis. 

Non-transformed cells require an anchorage to extra-
cellular matrix (ECM) to execute the mitotic programme. 
In this process ROS act as key second messengers to 
facilitate proper mitosis [27,169]. A synergistic sig-
nalling between growth factors (GF) and integrins 
leads to an oxidative burst through a Rac-1-depen-
dent increase in mitochondrial ROS [13,170]. This 
leads to oxidative inhibition of PTPs, activation of Src 
and other protein tyrosine kinases or structural pro-
teins, with the net effect of increasing cell adhesion 
to ECM, cell spreading and proliferation. 

Loss of cell-to-matrix adhesion in non-transformed 
cells triggers anoikis, a specifi c type of apoptosis. In 
contrast to non-transformed cells, tumour cells are 
protected from this process and show increased cell 
proliferation and independence of anchorage. Such 
resistance to anoikis allows tumour cells to survive 
outside their ‘normal’ environment and to metastasize 
and form new colonies at distant sites. The mecha-
nism of how tumour cells become independent of cell 
attachment signals is most likely through increased 
generation of intracellular ROS. Such increase in oxi-
dative stress seems to mimic autocrine/adhesive sig-
nals, which in normal cells are mediated by growth 
factor and integrin signalling. For example, in pros-
tate cancer cells redox-regulated anoikis resistance is 
mediated via Src and the EGF receptor [171]. Sub-
sequently, this results in a constitutive deregulation of 
mitogenic pathways and proliferation independent of 
anchorage. It further allows cancer cells to abolish 
anoikis signals and escape apoptotic responses after a 
loss of cell/ECM contacts (for an excellent review on 
this topic see [27]). 

Before cells migrate to distal sites, they undergo 
epithelial-mesenchymal transition (EMT) to release 
themselves from the restrain of the basal membrane. 
During this process, metalloproteinases (MMPs) are 
upregulated to degrade the proteins that compose the 
basal membrane. Treatment of murine mammary epi-
thelial cells with MMP-3, a stromal protease that is 
upregulated in mammary tumours, increased their 
intracellular ROS levels (mainly H 2O2) and led to 
EMT through induction of Rac1b RhoGTPase [172]. 
Moreover, application of NAC ( N-acetyl-L-cysteine) 
to remove ROS abolished MMP-3-induced EMT 
[172], bolstering that MMP induces oxidative stress 
to lead to malignant transformation. This increase in 
ROS mediates oxidative damage to DNA and genomic 
instability. It further stimulates the expression of 

Snail, which previously was identifi ed as one of the 
key-transcription factors regulating EMT. Other 
ROS-regulated genes relevant to EMT are E-cadherin, 
integrins and MMPs [173]. 

Activation of Rac and subsequent generation of 
ROS leads to NF- κB activation and MMP-1 produc-
tion in response to integrin-mediated cell shape changes 
[170]. Rac-1 mediated changes in cellular ROS levels 
also increase the migratory potential of MCF-7 and 
T47D breast cancer cells, probably through NF- κB
[174]. Similarly, Rac-1 is a downstream target for 
c-Met and Rac-1-mediated ROS generation was involved 
in Met’s prometastatic signalling [28]. Moreover, 
Rac-1 has important functions in ROS mediated actin 
reorganization of migrating tumour cells [175]. Mul-
tiple processes regulate actin reorganization at the lead-
ing edge of migrating cells including the actin-severing 
protein cofi lin [176,177]. Rac-1 activates NADPH 
oxidase (NOX) and ROS generated by this enzyme 
have been shown to activate the cofi lin pathway and 
thus contribute to increased cell migration [177,178]. 
The tyrosine kinase Src also regulates NADPH oxi-
dase 1 (NOX1) induced generation of ROS [179]. 
NOX1 is capable of transforming cells and is also 
required to maintain the transformed state [87,174]. 
NOX1-mediated ROS generation has been shown to 
be necessary for the formation of invadopodia, actin 
cytoskeleton-based structures that tumour cells use 
to invade [180]. 

Matrix metalloproteinases facilitate the degradation 
and reorganization of the extracellular matrix and 
their increased activation was associated with primary 
tumour growth, angiogenesis, increased tumour cell 
invasion, blood vessel penetration and metastasis 
[181–184]. ROS regulate not only the expression 
of MMPs, but also the inactivation of their inhibi-
tors TIMP (tissue inhibitor of metalloproteinase) 
[185,186]. An important step in oxidative stress-
mediated expression of MMP genes is the dismu-
tation of mitochondrially-generated superoxide to 
hydrogen peroxide [187]. Hydrogen peroxide then 
regulates the expression of MMPs through activation 
of the Ras-Erk1/2-Ets (E twenty-six), Rac-1-JNK-
AP-1 (activating protein-1) or p38 signalling path-
ways [188] (for a review on this topic see [184]). 
Further, the redox-sensitive transcription factors 
NF-κB and FOXO3a have been des cribed as regula-
tors of MMP expression [1,159]. Additionally to 
regulating MMP expression, ROS also can lead to the 
direct activation of MMPs through reactions with 
thiol groups in their catalytic domain [189]. 

Finally, ROS may also promote tumour cell metas-
tasis by increasing the vascular permeability [181]. 
Increased activity of Rac-1 in primary endothelial 
cells mediates a loss of cell–cell adhesions and loosens 
the integrity of the endothelium, which allows the intra-
vasation of cancer cells [190]. It was shown that reverse 
(basolateral-to-apical) transendothelial migration 
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(TEM) of human melanoma cells is induced by 
hydrogen peroxide and can be blocked by thioredoxin 
[191]. Oxidative stress also regulates the expression 
of interleukin-8 (IL-8) and the cell surface protein 
ICAM-1 (intracellular adhesion protein 1, CD54) 
through NF- κB. Both ICAM-1 and IL-8 can regulate 
the trans-endothelial migration of tumour cells [192]. 
Further, phosphorylation of the heatshock protein 
Hsp27 by ROS-activated p38 induces changes in 
actin dynamics in vascular endothelial cells, which 
may contribute to facilitate invasive processes [193]. 

Hypoxia as a factor leading to tumour progression

Within a growing tumour mass cancer cells repeat-
edly face cycles of hypoxia and reoxygenation [194–
196]. Limitations in oxygen supply due to prolonged 
hypoxia can result in cell death. Tumour cells can use 
the ‘Warburg effect’, a metabolic switch to glycolysis, 
to adapt to low oxygen tension [197]. Normal and tum-
our cells differ significantly in energy metabolism. 
Glucose is the primary energy source for normal cells. 
Normal cells switch to anaerobic glycolysis only when 
adequate oxygen supply is not available and mito-
chondrial function is suppressed [198]. A shift from 
aerobic to anaerobic metabolism in tumour cells occurs 
even under conditions of normoxia or after mitochon-
drial dysfunction, oncogenic transformation or loss of 
tumour suppressor genes [196,199]. 

The adaption of tumour cells to hypoxia contributes 
to the malignant phenotype and to aggressive tumour 
progression [200]. Hypoxia induces several transcrip-
tion factors including HIF-1 (hypoxia inducible fac-
tor-1), which is composed of two sub-units HIF-1 α
and HIF-1 β [196,200]. Under normal growth condi-
tions HIF-1 is regulated by oxygen-dependent prolyl 
hydroxylases (PHDs) and the VHL ubiquitin ligase, 
which promote its proteosomal degradation [201]. How-
ever, HIF-1 becomes transcriptionally-active under low 
oxygen conditions. It was shown that under hypoxic 
conditions MnSOD suppresses the induction of HIF-
1α in human breast carcinoma cells. This suggests that 
superoxide may contribute to HIF-1 α accumulation 
[133]. However, increased generation of H 2O2 also led 
to accumulation of HIF-1 α, suggesting that both types 
of ROS can increase HIF-1 α levels [133]. Increased 
HIF-1α expression has been shown to correlate with 
poor prognosis and increased cancer cell invasiveness. 
HIF-1 regulates glycolysis-related genes and inhibits 
mitochondrial respiration (reviewed in [196]), result-
ing in hypoxic adaption of tumour cells. This leads to 
glycolytic ATP generation [202], reduced formation 
of mitochondrially-generated H 2O2, enhanced sur-
vival of poorly oxygenated cells and regulation of 
EMT- and metastasis-related genes [203]. HIF-1 also 
prevents intr acellular acidifi cation, which leads to an 
increased formation of lactate and CO 2 [202], both 

favouring extracellular matrix degradation and cell 
invasion [204]. 

Role of oxidative stress in angiogenesis 

With increased tumour growth, more nascent blood 
vessels are developed to facilitate oxygen and nutrient 
supply to the centre of the tumour [205,206]. Several 
lines of evidence suggest a role for ROS in augment-
ing angiogenesis. For example, hypoxic conditions 
stimulate blood vessel development, whereby the blood 
fl ow in these new vessels is often chaotic, causing oxi-
dative stress through periods of hypoxia and reoxy-
genation [181]. It was shown with a mouse model for 
breast cancer that administration of Mn(III) ortho-
tetrakis-N-ethylpyridylporphyrin, a potent scavenger 
of reactive oxygen and nitrogen species, attenuates 
angiogenesis by modifying the density of microvessels 
and the proliferation rate of endothelial cells [207]. 

Angiogenesis is mediated through growth factors 
such as vesicular epithelial growth factor (VEGF) [208–
210]. VEGF expression can be regulated by nutrient 
deprivation and hypoxia, which both increase intrac-
ellular levels of reactive oxygen species [211]. In such 
an environment HIF-1 and its co-factor p300 initiate 
gene expression including the expression of VEGF 
[212,213]. On the other hand, suppression of endog-
enous ROS by mitochondrial inhibitors or glutathi-
one peroxidase decreases HIF-1 induction and VEGF 
expression in cancer cells [214]. Growth factor-medi-
ated activation of Akt and subsequent formation of 
superoxide and H 2O2 also lead to an induction of HIF-1 
followed by expression of VEGF [86,215]. This is 
blocked when cells are pre-treated with catalase [86]. 
The knockdown of PTEN, a negative-regulatory phos-
phatase for the PI3K/Akt pathway, enhances VEGF 
secretion [216]. This is probably mediated by an increase 
in basal levels of hydrogen peroxide and superoxide, 
due to decreased expression of several antioxidant 
enzymes such as peroxiredoxins and Cu/ZnSOD [94]. 

ROS-induced secretion of matrix metalloprotei-
nases such as MMP-1 from tumour cells promotes 
vessel growth within the tumour microenvironment. 
Further, a transient expression of MMP-1, MMP-2 
and MMP-9 correlates with an increase in ROS dur-
ing formation of capillary-like structures, implicating 
that MMP-mediated angiogenesis also occurs through 
upregulation of ROS [217]. ROS can also trigger 
vasodilation to increase the blood supply of tumours 
through activation of heme oxygenase-1, a enzyme 
that generates carbon monoxide or induces the for-
mation of nitric oxide [218]. 

ROS and redox regulation in cancer stem cells

It is well established that after chemo- or radiotherapy 
a small sub-population of surviving primary cancer cells 
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can initiate recurrence. This sub-population of cells, 
termed cancer stem cells (CSC), expresses stem cell 
markers and is highly drug resistant. CSCs utilize redox-
regulatory mechanisms to promote cell survival and 
tolerance to treatment [219,220]. As previously discussed, 
the accumulation of ROS is thought to contribute to 
the conversion of normal cells to cancer cells by mediat-
ing genomic instability, oncogenic growth, ECM inde-
pendency and increased motility. In contrast to cancer 
cells, which maintain these high ROS levels during all 
stages of malignancy, cancer stem cells have an increased 
antioxidant capacity [221]. Keeping endogenous and 
induced ROS at moderate levels mediates drug resis-
tance and allows these cells to survive during treatment, 
resulting in both stemness and cancer-initiating capa-
bilities. Diehn et al. [222] recently showed that human 
and murine mammary epithelial cancer stem cells con-
tain lower concentrations of ROS, specifi cally superoxide, 
than the more mature progeny, but also normal epithe-
lial cells. They further demonstrated that these differ-
ences in ROS levels are critical for maintaining stem 
cell function. When compared to their normal tumour 
cell counterparts, CSCs showed increased expression of 
a variety of enzymes that contribute to oxygen radical 
scavenging [222]. Particularly genes regulating or involved 
in glutathione synthesis, including glutathione synthe-
tases and glutamate cysteine ligase, were increased in 
their expression. Also increased was the expression of 
FOXO1, a forkhead transcription factor that was pre-
viously implicated in the regulation of other ROS scav-
engers such as SOD and catalase to confer resistance 
to oxidative stress in haematopoietic stem cells [223]. 

Since ROS are critical mediators of ionizing radiation-
induced therapy [224,225] the expression of antioxi-
dants in CSCs prevented DNA damage and protected 
cells from irradiation-induced cell death [222]. L- S,R-
buthionine sulphoximine (BSO)-mediated pharmaco-
logical depletion of the ROS scavenger GSH in epithelial 
CSC markedly decreased their clonogenicity and resulted 
in increased radiosensitization [222]. Consequently, 
CSC-enriched populations accumulated fewer single 
and double strand breaks in their DNA after irradia-
tion. Due to high levels of antioxidant signalling, cancer 
stem cells may also not be responsive to other (chemo-
therapeutic) treatments that target cancer cells by increas-
ing intracellular ROS levels. To reduce recurrence in 
response to conventional therapy cancer stem cells have 
to be additionally targeted under consideration of their 
unique redox status. It will be interesting to see if 
decreasing oxidative defenses in cancer stem cells  in vivo
will cause them to loose their stemness, and if a com-
bination therapy with standard chemotherapy is effec-
tive to eliminate both tumour and cancer stem cells. 

Random damaging functions of ROS  

Increased levels of reactive oxygen species can lead to 
‘non-specifi c’ damage of macromolecules such as 

DNA, proteins and lipids. Some ROS such as H 2O2
are not very reactive towards DNA and most of the 
damaging effects on DNA are due to hydroxyl ions, 
which are generated via the Fenton reaction [226]. In 
this reaction transition metals such as iron and copper 
donate or accept free electrons during intracellular 
reactions and use H 2O2 to catalyse free radical forma-
tion. Hydroxyl radicals attack DNA rapidly due to 
their high diffusibility, which results in formation of 
DNA lesions including oxidized DNA bases, single 
strand and double strand breaks [227,228]. DNA 
adducts are removed by either the base excision repair 
(BER) or the nuclear excision repair (NER) pathways 
[229]. Cells incapable to completely repair DNA lesions 
(i.e. due to defi cient DNA repair enzymes) undergo 
apoptosis to ensure these mutations will not be passed 
on to progeny cells. However, under certain circum-
stances, the cells harbouring DNA mutations success-
fully escape programmed cell death, which raises a high 
chance for cancerous growth. 

The oxidative modifi cation of proteins by reactive 
species is implicated in the aetiology or progression 
of various disorders and diseases. The major damage 
of ROS to proteins is modifi cation in their amino acid 
residues, resulting in altered functions. Some ROS-
induced modifi cations also increase protein carbony-
lation, nitration of tyrosine and phenylalanine residues, 
protein degradation [230] or lead to formation of cross-
linked and glycated proteins [231,232]. The oxi dized
amino acid residues of proteins can infl uence their 
ability in signal transduction mechanisms. For exam-
ple, irreversible oxidation of phosphatases within the 
catalytic sites hinders their enzymatic activity [233]. 
Oxidative alterations of enzymes also impact DNA 
repair effi ciency, the fi delity of DNA polymerase dur-
ing replication/synthesis and transcriptional activity, 
which tightly associates with cancer onset [1,234–236]. 

Other cellular targets of ROS are lipids. ROS react 
with polyunsaturated or polydesaturated fatty acids to 
initiate lipid peroxidation [237,238]. Lipid oxidation 
generates numerous genotoxic molecules such as malon-
dialdehyde, 2-alkenals and 4-hydroxy-2-alkenals [239,
240]. ROS-induced lipid peroxidation can be used as 
a tumour marker, as shown in clinical studies [241]. 
For example, the detection of thiobarbituric acid-reactive 
substances in the serum of patients with colorectal 
cancer indicates a high level of lipid peroxidation. 

Application of ROS and antioxidants in cancer 
therapy and prevention  

Many chemotherapeutic strategies are designed to 
exuberantly-increase cellular ROS levels with the goal 
to induce irreparable damages, subsequently resulting 
in tumour cell apoptosis (for a detailed review on the 
use of ROS in cancer therapy see [221]). Dependent on 
the tumour type, this can be achieved through chemo-
therapy or radiation therapy [1,242–244]. For example, 
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oxidative stress levels and caused cell death in pancreatic 
and prostate cancer cells [265,266]. Moreover, this can 
be enhanced by additionally increasing cellular ROS lev-
els with mitochondrial electron chain blockers [267]. 

Modulation of intracellular ROS levels can also be 
utilized to target oxidative stress-mediated tumour pro-
gression. For example, a loss of cell adhesion in tum-
our cells and anchorage-independent survival is tightly 
linked to a gain of cell motility and increased invasive-
ness. Salvicine (SAL) is a compound originally iden-
tifi ed as a topoisomerase II poison and has been entered 
in a Phase II clinical trial for cancer therapy. Treat-
ment of invasive MDA-MB-435 breast cancer cells 
with SAL causes rounded cell morphology, which indi-
cates a decrease in cell adhesion [71]. The inhibition 
of ROS by the free radical scavenger NAC restores 
cell adhesion of MDA-MB-435 cells, suggesting that 
ROS augment their metastatic ability. 

Since evidence from clinical and bench studies indi-
cate that elevated intracellular ROS contribute to early 
events involved in cancer initiation and progression, 
an opposite approach to mediating an increase in cel-
lular ROS levels is to use antioxidants to deplete tumour 
cells from ROS-induced survival signalling pathways. 
Such treatment may also have preventive functions. 
For instance, clinical studies have linked gain of onco-
genic mutations in K-ras and subsequent ROS forma-
tion or pancreatic infl ammation (pancreatitis) and 
macrophage-mediated generation of hydrogen perox-
ide and superoxide to events leading to an increased 
risk for pancreatic cancer [268–270]. Other examples 
are individuals with a high cancer risk due to the defi -
ciency of inherited tumour suppressor genes such as 
p53 or PTEN. For these groups a treatment with anti-
oxidants may be effective in delaying or even prevent-
ing tumour development. Depending on the therapeutic 
strategy, a use of antioxidants in combination therapy 
may have an adverse effect on anti-cancer drugs that 
act on tumor cells by increasing ROS levels to induce 
cell death. However, a combination therapy with anti-
oxidants and therapeutics that induce apoptosis inde-
pendent of oxidative stress may be effective. Antioxidants 
under development for clinical use are for example 
the SOD mimetic EUK-134 [271] or a mimetic of 
glutathione disulphide named NOV-002 [272]. 

In conclusion, to tailor specifi c combination ther-
apy and to decide which strategy to use, chemothera-
peutics that excessively increase intracellular ROS to 
reach a toxic level or antioxidants may be dependent 
on the tumour type and stage, the type and level of 
endogenous ROS as well as abundance of ROS-induced 
survival pathways. 

Summary 

After malignant transformation many cancer cells 
show a sustained increase in intrinsic generation of 

for pancreatic cancer, to date only few treatment 
strategies have been proven as effective for therapy 
and these include combination therapy of gem cita-
bine with trichostatin A, epigallocate-3-gallate(EGCG), 
capsaicin and benzyl isothiocyanate (BITC) [148,245–
249]. All of these drugs share the same mechanism, 
namely to elevate intracellular ROS levels to trigger 
apoptosis [146,148,250,251]. Another compound 
that modulates ROS levels and is currently tested for 
its potential use in tumour therapy is Sulindac, a FDA-
approved, non-steroidal and anti-infl ammatory drug. 
Sulindac enhances intracellular ROS levels and ren-
ders colon and lung cancer cells more sensitive to H 2O2-
induced apoptosis [252]. In addition, Aminofl avone 
(5-amino-2-(4-amino-3-fl uorophenyl)-6,8-difl uoro-7-
methylchromen-4-one; AF) induces cell death in 
MCF-7 and MDA-MB-468 breast cancer cells, but is 
not toxic for non-malignant MCF-10A breast epithe-
lial cells [253,254]. Upon treatment with Aminofl a-
vone, an increase of intracellular ROS is detected, 
correlating with increased activation of Caspase 3 and 
subsequent apoptosis. The inhibition of ROS genera-
tion by pre-treatment of cells with N-acetyl-L-cysteine 
(NAC) reverses Aminofl avone-induced cell death [254]. 
Several compounds such as IOA, pancratistatin (PST) 
and triphala (TPL) induce apoptosis of breast cancer 
cells through similar mechanisms as Aminofl avone, 
which is to increase intracellular ROS levels through 
dissipation of the mitochondrial membrane potential 
[255–260]. 

Mitochondrial DNA codes for several respiratory 
chain sub-units and is more vulnerable to DNA dam-
age than nuclear DNA. The exposure of cells to ion-
izing radiation can lead to mitochondrial complex II 
dysfunction and increase the steady state levels of reac-
tive oxygen species and contribute to genomic insta-
bility [261]. In human cancer, mutations in mitochondrial 
genes, such as the gene encoding cytochrome  c oxi-
dase II, are associated with increased ROS generation 
[262]. However, the susceptibility of mitochondrial 
DNA to ROS-induced mutation may also be utilized 
for therapy. For example, chemotherapeutic treatment 
of cancer patients with DNA damaging agents can 
lead to cell death by inducing mutations in the mito-
chondrial DNA that increase cellular ROS to a toxic 
level [262]. 

As discussed above, when compared to normal cells, 
cancer cells show increased sensitivity to glucose-induced 
cytotoxicity and it was suggested that increased glu-
cose metabolism in cancer cells can compensate excess 
metabolic production of ROS. For example, glucose 
metabolism inhibits apoptosis in cancer cells through 
redox inactivation of cytochrome  c [263]. Therefore, 
it was concluded that inhibition of glucose metabolism 
may provide a target for selectively targeting cancer 
cells by enhancing their oxidative stress levels to pro-
mote cell death [264]. 2-deoxyglucose (2DG), a glu-
cose analogue that can not be metabolized, increased 
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